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Supplementary Figure 1: Examples of genes affected by a variety of mutation types. Six loci with

patterns indicative of AID-mediated SHM and structural alterations are shown. Each gene has a

peak of mutations downstream of its TSS enriched for C to T mutations. Many such examples were

also found to be affected by focal deletions, gains or breakpoints of other SV types within the same

region (horizontal coloured bars). In some scenarios, the concentration of mutations could not be

readily assigned to a single gene as it affected two genes on opposing strands with a small distance

between their TSS (e.g. OSBPL10 and ZNF860). Other affected genes contain peaks at the TSS

of only their shorter isoform (e.g. SGK1), possibly indicating that is the predominant TSS used in

DLBCL, whereas others have multiple peaks including those in intronic regions (e.g. ST6GAL1),

possibly affecting enhancers or other regulatory elements.
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Supplementary Figure 2: Mutation signatures inferred from somatic SNVs in 153 DLBCL

genomes. (A) Somatic single nucleotide variants (SNVs) were quantified and categorized by base

change, collapsing complementary pairs by selecting the pyrimidine reference base. The number

of structural variants per sample is also shown. (B) SNVs were further subdivided into 96 classes

by incorporating the trinucleotide context of each mutation. De novo signature inference yielded an

optimal solution of 11 signatures. Each signature has been assigned to the most similar signature

in COSMIC, which is indicated in parentheses.
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Supplementary Figure 3: Recurrence of SVs affecting known or suspected DLBCL-related genes

identified by WGS. Based on a targeted sequencing experiment on a subset of these cases, the SVs

detected by this approach have a specificity of 95%. SVs that deregulate the expression or impact

the function of BCL2, MYC, FOXP1, CIITA, TBL1XR1, CKDN2A, CD58 and MIR17HG have

been previously described in DLBCL and other lymphomas. In contrast to BCL2 and MYC, which

are commonly rearranged with a limited number of partner loci, the more common trend among

the remaining genes was a promiscuous repertoire of rearrangements. The overall diversity and

recurrence of SVs affecting CD58 were notably more common than has been previously reported.

Many of the additional examples are known aSHM targets including the PAX5 locus, CD83, and

DMD which are subject to double-strand DNA breaks due to AID activity.
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Supplementary Figure 4: Structural and copy number alterations indicative of tumour suppressors

or oncogenes. (A) Two examples of genes with SV breakpoint and CNV patterns indicating tumour

suppressor function are shown. MEF2B has two main mutation hotspots. This locus and TOX are

both affected by multiple focal deletions across the cohort of genomes, whereas amplifications and

gains of these loci are rare. (B) Two genes with recurrence of SVs and CNVs showing elevated

expression in cases with either mutation type. Only chromosomes involved in at least one SV are

displayed for each gene. The red region represents the cumulative number of gains/amplifications

encompassing each locus across the cohort of genomes. The expression level of the gene with (red)

or without (grey) either a SV or CNV gain affecting the locus is shown (centre). Some of the SVs

affecting each of NFKBIZ and FCGR2B occur in the gene body and may partially disrupt or alter

their normal function. SVs involving NFKBIZ were all intrachromosomal and included a striking

number of small deletions affecting the 3′ UTR. This region was also enriched for SSMs and was

identified by Doppler analysis. Similarly, there were numerous examples of focal CNVs within the

Fc-γ receptor locus and a single translocation involving this region.
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Supplementary Figure 5: Genes with differential expression associated with proximal non-coding

mutations. (A) This box-whisker plot shows the expression of all genes with significantly different

mRNA abundance in cases with and without mutations in a proximal mutation peak identified

by wavelet analysis. The bulk of these genes have higher expression in mutated cases (green)

compared to cases lacking a mutation in the region (red) and they largely represent known or

suspected targets of aSHM. ZCCHC7 is adjacent to the PAX5 locus, which contains an enhancer

found previously to be recurrently mutated in CLL. These mutations were associated in that study

with higher expression of PAX514. (B) Two examples of genes affected by aSHM with higher

expression in mutated cases are shown. PRDM1 is a tumour suppressor gene that is commonly

mutated and deleted in DLBCL, though here was found to have elevated expression in cases with

mutations (mainly intronic). The recurrence of mutations in the first intron identified here, most

likely due to aSHM, has not been reported. These mutations were strongly enriched in ABC cases.

Given these mutations were associated with higher expression, the bulk of these is unlikely to

be functional, though it is conceivable that a subset of aSHM-derived mutations lead to reduced

expression. AICDA, which encodes the AID enzyme, also had a mutation peak enriched in ABC.

The expression of this gene is strongly associated with this molecular subgroup, though these

mutations have not been detected by prior studies.
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Supplementary Figure 6: Coding and non-coding mutations with differential representation be-

tween COO subgroups. (A) The top 36 mutation peaks showing significant enrichment for muta-

tions in either ABC or GCB genomes are shown. For each patient (columns), the colour indicates

the variant classification for the mutation affecting that locus. The percentage of patients with mu-

tations in each region (based on WGS) is shown on the side for GCB (left) and ABC (right) cases.

(B) BCL2 is a known target of SHM that is typically attributed to translocation to the immunoglob-

ulin heavy chain locus and proximity to the IGH super-enhancer. We detected two GCB-associated

mutation peaks in BCL2 with one spanning the TSS and 5′ UTR and the second residing in the in-

tron. Based on the histone acetylation state (H3K27) determined by ENCODE, both of these are

in regions with strong regulatory potential.
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Supplementary Figure 7: Mutation peaks and changes in allele expression. (A) Genes with mu-

tation peaks detected separated by pattern. Using the annotation of mutations within the peaks,

we determined the most common annotation per patient/peak combination. In most known aSHM

targets, this is typically either 5′ flank, 5′ UTR or intronic mutations. We identified the genes that

had other annotations more common than these as genes less likely to be affected by aSHM. Some

of these are RNA genes and thus do not have UTRs (e.g. MALAT1, NEAT1) and many histone

genes, which are small and may have a different pattern due to their length but may nonetheless be

affected by aSHM. Others are genes with mutation hot spots such as MEF2B, CD79B and EZH2.

Among these genes, NFKBIZ appeared distinct 3′ UTR mutations was the only mutation type

within its Doppler peak. (B) We identified somatic mutations which lead to significant changes

in RNA abundance by comparing the frequency of somatic mutations identified through DNA se-

quencing with the corresponding frequency obtained from RNA sequencing. For each gene, the

proportion of patients in allelic imbalance (AI) was determined by comparing the number of cases

with at least one mutation in AI in that gene, to the total number mutated cases. Genes with less

than 50% of cases in AI are not shown.
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Supplementary Figure 8: Structural changes in NFKBIZ 3′ UTR induced by common mutations.

(A) We performed Selective 2′-hydroxyl acylation analysed by primer extension (SHAPE) on a

fragment of the UTR. We generated RNA from synthetic DNA templates representing the wild-

type or five mutants including three distinct deletions (Del1-Del3) and two SNVs (SNV1 and

SNV2), indicated with coloured arrows on the left of the gel. We prepared a sequencing ladder

for each ddNTP using reverse-transcribed RNA from the wild-type template. Each of lanes U, A,

G, C represent the complementary ddNTP and are numbered according to the position in the UTR

fragment (counting from the 5′). The portion of the sequence resolved on the gel is shown to the left

along with numbers corresponding to the position in the RNA fragment. Bands in the remaining

lanes indicate the length of truncated RNA caused by modification of exposed nucleotides by

NMIA treatment. All RNAs showed reproducible base pairing in some regions. Each of SNV2,

Del1 and Del3 exhibited distinct changes in protection, indicating a local change in structure.

In SNV1 and Del2, there was de-protection of nucleotides in the same region (orange boxes),

which corresponds to the general location of the mutation hot spot (approximately 70-90 in the

fragment). (B) We also compared the two SNV mutants to wild-type using circular dichroism

(CD). CD spectra for the WT and two mutants resemble the classical ‘A type’ helical duplex, a

conformation typical of double-stranded RNA. Given the equal lengths of the three RNAs, CD

allows a relative quantitative comparison of Watson-Crick pairs. In agreement with the SHAPE

result, each SNV mutation caused a reduction in paired bases relative to wild type with SNV1

having the more extreme effect.
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Supplementary Figure 9: Details and proposed mechanism of FCGR2B co-amplification with

FCRLA. (A) The distal breakpoints for focal FCGR2B amplifications identified in four DLBCL

genomes are shown. Each lies within introns of either FCRLA or FCRLB or the intergenic space

between these genes. In patient 07-25012, a second breakpoint representing a copy-neutral in-

version was also detected in this region. (B) Because only a single breakpoint pair is detected in

most cases, the gain of multiple copies of the locus is consistent with formation of a double minute

chromosome containing FCGR2B and varying amounts of FCRLA. The circular extrachromoso-

mal segment could arise from intrachromatid recombination or aberrant class-switch recombina-

tion. Most of the examples of this phenomenon show reduced coverage between FCGR2C and

FCGR2B, which is consistent with this event affecting a germline allele harbouring a deletion and

concomitant fusion of FCGR2C-FCGR2B. (C) The presence of read pairs in RNA from these cases

also supports the presence of a circular double minute. In two patients, reads mapping to FCGR2C

and FCGR2B each have mates that map to FCRLA. Green horizontal lines represent reads pairs

oriented per the green arrows in (B).
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Supplementary Figure 10: Determining the relationship between FCGR2B mRNA level on pa-

tient outcome. (A) Depending on the threshold used to stratify patients, a substantial proportion of

FCGR2B-high cases have no detectable focal amplification or translocation affecting the locus. We

stained a tissue microarray with anti-CD32B to visualize the protein level in patients having and

lacking this genetic alteration. A representative example of a FCGR2B-normal DLBCL with mod-

erate CD32B staining is shown (DLC0111) alongside five examples that each harbour a somatic

amplification. (B) The expression of FCGR2B alone was significantly associated with outcome

within the GCB cases analysed by RNA-seq. We stratified patients into FCGR2B-high and -low

strata and tested these two groups for significant differences across a range of thresholds. The P

value (left) and hazard ratio (right) showed that any cutoff above the median allowed significant

separation of patients on TTP. A similar trend was seen for DSS (not shown). (C) A more stringent

threshold of normalized FCGR2B expression >10.5 demonstrated a striking separation of cases

with very short TTP (left) and DSS (right) reminiscent of ABC DLBCLs.
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Supplementary Figure 11: Western blot image without cropping. The upper and lower sections

are from the same gel but were exposed to different antibodies with the upper showing IκB-ζ and

the lower showing Histone protein H3. The middle section of the membrane was not stained with

either of these antibodies.
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